Abstract

We investigate the relaxation of a coherently excited molecule in the Redfield approximation. The molecular model, parametrized to describe donor-acceptor dyes that represent a large family of molecules of interest for several applications, accounts for two diabatic electronic states non-adiabatically coupled to a few vibrational coordinates. The proposed approach successfully describes the fast vibrational relaxation, followed by a much slower relaxation towards the ground state, a physically relevant result that is robust vs. the specific model adopted for the system-bath coupling and the specific (reasonable) choice of the bath spectral density. We demonstrate that, when dealing with more than a single vibration, it is important that each vibration is separately coupled to an independent bath so as to avoid the cross-talking of the modes through their coupling to the same bath. Provided that the overall strength of the electron-vibration coupling is maintained constant, the number of molecular vibrations introduced in the model does not affect the system dynamics, supporting the use of effective and easy models for donor-acceptor dyes accounting for a single coupled vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.