Abstract

We design and analyze a novel gradient-based algorithm for unconstrained convex optimization. When the objective function is $m$ -strongly convex and its gradient is $L$ -Lipschitz continuous, the iterates and function values converge linearly to the optimum at rates $\rho $ and $\rho ^{2}$ , respectively, where $\rho = 1-\sqrt {m/L}$ . These are the fastest known guaranteed linear convergence rates for globally convergent first-order methods, and for high desired accuracies the corresponding iteration complexity is within a factor of two of the theoretical lower bound. We use a simple graphical design procedure based on integral quadratic constraints to derive closed-form expressions for the algorithm parameters. The new algorithm, which we call the triple momentum method, can be seen as an extension of methods such as gradient descent, Nesterov’s accelerated gradient descent, and the heavy-ball method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.