Abstract

We present a multiwavelength analysis of star-forming galaxies in the massive cluster MS0451.6-0305 at z ∼ 0.54 to shed new light on the evolution of the far-infrared–radio relationship in distant rich clusters. We have derived total infrared luminosities for a spectroscopically confirmed sample of cluster and field galaxies through an empirical relation based on Spitzer Multiband Imaging Photometer for Spitzer 24 μm photometry. The radio flux densities were measured from deep Very Large Array 1.4 GHz radio continuum observations. We find the ratio of far-infrared to radio luminosity for galaxies in an intermediate-redshift cluster to be qFIR = 1.80 ± 0.15 with a dispersion of 0.53. Due to the large intrinsic dispersion, we do not find any observable change in this value with either redshift or environment. However, a higher percentage of galaxies in this cluster show an excess in their radio fluxes when compared to low-redshift clusters (⁠|$27^{+23}_{-13}$| per cent to 11 per cent), suggestive of a cluster enhancement of radio-excess sources at this earlier epoch. In addition, the far-infrared–radio relationship for blue galaxies, where qFIR = 2.01 ± 0.14 with a dispersion of 0.35, is consistent with the predicted value from the field relationship, although these results are based on a sample from a single cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.