Abstract
We present an any-time concurrent probabilistic temporal planner (CPTP) that includes continuous and discrete uncertainties and metric functions. Rather than relying on dynamic programming our approach builds on methods from stochastic local policy search. That is, we optimise a parameterised policy using gradient ascent. The flexibility of this policy-gradient approach, combined with its low memory use, the use of function approximation methods and factorisation of the policy, allow us to tackle complex domains. This factored policy gradient (FPG) planner can optimise steps to goal, the probability of success, or attempt a combination of both. We compare the FPG planner to other planners on CPTP domains, and on simpler but better studied non-concurrent non-temporal probabilistic planning (PP) domains. We present FPG- ipc, the PP version of the planner which has been successful in the probabilistic track of the fifth international planning competition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.