Abstract

Bilobalide, a unique constituent of Ginkgo biloba, has been reported to potentiate population spikes in hippocampal CA1 pyramidal cells and to protect the brain against cell death. In this study, the effects of bilobalide on synaptic transmission and its plasticity in rat hippocampal subfields were electrophysiologically investigated. Bilobalide (50μM) significantly potentiated the input-output relationship at Schaffer collateral (SC)-CA1 synapses but not at medial perforant path (MPP)-dentate gyrus (DG), lateral perforant path (LPP)-DG, or mossy fiber (MF)-CA3 synapses. Facilitative effects of bilobalide on synaptic plasticity were only observed at MPP-DG synapses, in which the induction of long-term depression was blocked in the presence of bilobalide. However, no effect on synaptic plasticity was observed at SC-CA1 synapses. These results suggest that bilobalide has differential effects on synaptic efficacy in each hippocampal subfield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.