Abstract
Mechanical metamaterials made of flexible building blocks can exhibit a plethora of extreme mechanical responses, such as negative elastic constants, shape-changes, programmability, and memory. To date, dissipation has largely remained overlooked for such flexible metamaterials. As a matter of fact, extensive care has often been devoted in the constitutive materials’ choice to avoid strong dissipative effects. However, in an increasing number of scenarios, where metamaterials are loaded dynamically, dissipation cannot be ignored. In this Research Update, we show that the interplay between mechanical instabilities and viscoelasticity can be crucial and that they can be harnessed to obtain new functionalities. We first show that this interplay is key to understanding the dynamical behavior of flexible dissipative metamaterials that use buckling and snapping as functional mechanisms. We further discuss the new opportunities that spatial patterning of viscoelastic properties offer for the design of mechanical metamaterials with properties that depend on the loading rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.