Abstract

The extent of oxygen isotopic exchange between detrital clay minerals and sea water was investigated by analyzing O 18 O 16 ratios of separated fine-grained size fractions of deep-sea sediments from three North Pacific ocean cores. Isotopic results were interpreted according to models based on the assumption that the extent of isotopic exchange should increase with decreasing particle size and increasing time of exchange between the sediment and sea water. The data indicate that information concerning the provenance and mode of formation of detrital clay minerals can be obtained from the O 18 O 16 ratios of the coarser-than-0.1 μm fraction of deep-sea sediments younger than several million years and the finer-than-0.1 μm fraction of deep-sea sediments younger than several tens of thousands of years. Furthermore, if the extent of chemical reaction between detrital clays and sea water is similar to the extent of oxygen isotopic exchange, such reaction may be important in regulating the chemistry of sea water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.