Abstract
BackgroundPorphyromonas gingivalis lipopolysaccharide (LPS) is a crucial virulence factor strongly associated with chronic periodontitis which is the primary cause of tooth loss in adults. It exhibits remarkable heterogeneity containing tetra-(LPS1435/1449) and penta-(LPS1690) acylated lipid A structures. Human gingival fibroblasts (HGFs) as the main resident cells of human gingiva play a key role in regulating matrix metalloproteinases (MMPs) and contribute to periodontal homeostasis. This study investigated the expression and regulation of MMPs1-3 and tissue inhibitors of MMP-1 (TIMP-1) in HGFs in response to P. gingivalis LPS1435/1449 and LPS1690 and hexa-acylated E. coli LPS as a reference. The expression of MMPs 1–3 and TIMP-1 was evaluated by real-time PCR and ELISA.ResultsThe MMP-3 mRNA and protein were highly upregulated in P. gingivalis LPS1690- and E. coli LPS-treated cells, whereas no induction was observed in P. gingivalis LPS1435/1449-treated cells. On the contrary, the expression of MMP-1 and −2 was not significantly affected by P. gingivalis LPS lipid A heterogeneity. The TIMP-1 mRNA was upregulated in P. gingivalis LPS1435/1449- and E. coli LPS-treated cells. Next, signal transduction pathways involved in P. gingivalis LPS-induced expression of MMP-3 were examined by blocking assays. Blockage of p38 MAPK and ERK significantly inhibited P. gingivalis LPS1690-induced MMP-3 expression in HGFs.ConclusionThe present findings suggest that the heterogeneous lipid A structures of P. gingivalis LPS differentially modulate the expression of MMP-3 in HGFs, which may play a role in periodontal pathogenesis.
Highlights
Porphyromonas gingivalis lipopolysaccharide (LPS) is a crucial virulence factor strongly associated with chronic periodontitis which is the primary cause of tooth loss in adults
Heterogeneous P. gingivalis LPS lipid A structures differentially modulate matrix metalloproteinases (MMPs) 1–3 and Tissue inhibitors of metalloproteinases (TIMP)-1 mRNAs The dose-dependent experiments showed that both P. gingivalis LPS1435/1449 and LPS1690 differentially modulated the expression of MMP-3 transcript
E. coli LPS (0.1-10 μg/ml) significantly upregulated MMP-3 expression. Both isoforms of P. gingivalis LPS upregulated to different extent the expression of MMP-1 and MMP-2 mRNAs, while E. coli LPS significantly upregulated the expression of these transcripts (Figures 1a and b)
Summary
Porphyromonas gingivalis lipopolysaccharide (LPS) is a crucial virulence factor strongly associated with chronic periodontitis which is the primary cause of tooth loss in adults. It exhibits remarkable heterogeneity containing tetra-(LPS1435/1449) and penta-(LPS1690) acylated lipid A structures. This study investigated the expression and regulation of MMPs1-3 and tissue inhibitors of MMP-1 (TIMP-1) in HGFs in response to P. gingivalis LPS1435/1449 and LPS1690 and hexa-acylated E. coli LPS as a reference. Porphyromonas gingivalis is a LPS is a potent immuno-inflammatory modulator which causes serious complications in host. It is comprised of three major components viz. Previous studies have shown that P. gingivalis possesses highly heterogeneous lipid A structures containing penta-acylated LPS1690 and tetraacylated LPS1435/1449, and this structural discrepancy may critically account for contrasting biological activities induced by P. gingivalis LPS [3,4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.