Abstract

Conventional approaches to analyzing the very large coherency strains that can occur during solid-state phase transformations are founded in linear elasticity and rely on infinitesimal strain metrics. Despite this, there are many technologically important examples where misfit strains of multi-phase mixtures are very large during their synthesis and/or application. In this paper, we present a framework for constructing strain-energy expressions and stress-strain relationships beyond the linear-elastic limit for crystalline solids. This approach utilizes group theoretical concepts to minimize both the number of free parameters in the strain-energy expression and amount of first-principles training data required to parameterize strain-energy models that are invariant to all crystal symmetries. Within this framework, the strain-energy and elastic stiffness can be described to high accuracy in terms of a set of conventional symmetry-adapted finite strain metrics that we define independent of crystal symmetry. As an illustration, we use first-principles electronic structure data to parameterize strain energy polynomials and employ them to explore the strain-energy surfaces of HCP Zr and Mg, as well as several important Zr-H and Mg-Nd phases that are known to precipitate coherently within the HCP matrices of Zr and Mg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.