Abstract

We report a multispectroscopic, voltammetric and theoretical hybrid of QM/MM study of the interaction between double-stranded DNA containing both adenine–thymine and guanine–cytosine alternating sequences and chloridazon (CHL) herbicide. The electrochemical behavior of CHL was studied by cyclic voltammetry on HMDE, and the interaction of ds-DNA with CHL was investigated by both cathodic differential pulse voltammetry (CDPV) at a hanging mercury drop electrode (HMDE) and anodic differential pulse voltammetry (ADPV) at a glassy carbon electrode (GCE). The constant bonding of CHL–DNA complex that was obtained by UV/vis, CDPV and ADPV was 2.1 × 10 4, 5.1 × 10 4 and 2.6 × 10 4, respectively. The competition fluorescence studies revealed that the CHL quenches the fluorescence of DNA–ethidium bromide complex significantly and the apparent Stern–Volmer quenching constant has been estimated to be 1.71 × 10 4. Thermal denaturation study of DNA with CHL revealed the Δ T m of 8.0 ± 0.2 °C. Thermodynamic parameters, i.e., enthalpy (Δ H), entropy (Δ S°), and Gibbs free energy (Δ G) were 98.45 kJ mol −1, 406.3 J mol −1 and −22.627 kJ mol −1, respectively. The ONIOM, based on the hybridization of QM/MM (DFT, 6.31++G(d,p)/UFF) methodology, was also performed using Gaussian 2003 package. The results revealed that the interaction is base sequence dependent, and the CHL has more interaction with ds-DNA via the GC base sequence. The results revealed that CHL may have an interaction with ds-DNA via the intercalation mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.