Abstract
We use self-consistent numerical simulations of the evolution and disruption of the Sun's birth cluster in the Milky Way potential to investigate the present-day phase space distribution of the Sun's siblings. The simulations include the gravitational N-body forces within the cluster and the effects of stellar evolution on the cluster population. In addition the gravitational forces due to the Milky Way potential are accounted for in a self-consistent manner. Our aim is to understand how the astrometric and radial velocity data from the Gaia mission can be used to pre-select solar sibling candidates. We vary the initial conditions of the Sun's birth cluster, as well as the parameters of the Galactic potential. We show that the disruption time-scales of the cluster are insensitive to the details of the non-axisymmetric components of the Milky Way model and we make predictions, averaged over the different simulated possibilities, about the number of solar siblings that should appear in surveys such as Gaia or GALAH. We find a large variety of present-day phase space distributions of solar siblings, which depend on the cluster initial conditions and the Milky Way model parameters. We show that nevertheless robust predictions can be made about the location of the solar siblings in the space of parallaxes ($\varpi$), proper motions ($\mu$) and radial velocities ($V_\mathrm{r}$). By calculating the ratio of the number of simulated solar siblings to that of the number of stars in a model Galactic disk, we find that this ratio is above 0.5 in the region given by: $\varpi \geq 5$mas, $4 \leq \mu \leq 6$masyr$^{-1}$, and $-2\leq V_\mathrm{r} \leq 0$kms$^{-1}$. Selecting stars from this region should increase the probability of success in identifying solar siblings through follow up observations [Abridged].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.