Abstract

Recent work on the engines of active galactic nuclei jets suggests that their power depends strongly and perhaps counter-intuitively on black hole spin. We explore the consequences of this on the radio-loud population of active galactic nuclei and find that the time evolution of the most powerful radio galaxies and radio-loud quasars fits into a picture in which black hole spin varies from retrograde to prograde with respect to the accreting material. Unlike the current view, according to which jet powers decrease in tandem with a global downsizing effect, we argue for a drop in jet power resulting directly from the paucity of retrograde accretion systems at lower redshift z caused by a continuous history of accretion dating back to higher z. In addition, the model provides simple interpretations for the basic spectral features differentiating radio-loud and radio-quiet objects, such as the presence or absence of disc reflection, broadened iron lines and signatures of disc winds. We also briefly describe our models' interpretation of microquasar state transitions. We highlight our result that the most radio-loud and most radio-quiet objects both harbour highly spinning black holes but in retrograde and prograde configurations, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.