Abstract

This article is an edited transcript of the MRS Medal presentation given by Mark Thompson (University of Southern California) on November 28, 2006, at the Materials Research Society Fall Meeting in Boston. Thompson was awarded the Medal for the “development of highly efficient heavy-metal phosphor complexes.” The MRS Medal recognizes a specific outstanding recent discovery or advancement which is expected to have a major impact on the progress of any materials-related field.Successful research efforts have led to improvements in the internal efficiencies of organic light-emitting devices (OLEDs) from 25% to 100%. The electroluminescence process in OLEDs involves the formation of both singlet and triplet excitons, formed in a ratio of 1:3. There is a drive to improve spin statistics by developing compounds in which triplet excitons, in addition to singlet excitons, can be used efficiently. Success with the incorporation of heavy-metal–based phosphors into OLEDs, in which the strong spin-orbit coupling of the metal atom allows for efficient molecular phosphorescence from triplet excitons, resulted in the identification and synthesis of an iridium complex, fac-tris-phenylpyridine iridium, with internal efficiencies of 100%. This, in turn, has led to the synthesis of more than 100 iridium- and platinum-based compounds, which have become the most efficient light-emitting compounds yet discovered. Intellectual property from Thompson's research in this field has led to more than 50 U.S. patents and substantial entrepreneurial investment toward commercial applications and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.