Abstract
Towards energy-saving, high efficiency, and low pollution, the lighting of light-emitting diode systems, the solid state lighting, is important for the future of green energy technology industry. It becomes the replacement of traditional lighting, such as light bulbs and compact fluorescent lamps. Because of the characteristics of semiconductor, the electrical property of light-emitting diodes is varying with operating temperature. Then, the alternation of electrical property changes the heating power and operating temperature of light-emitting diodes. This is a mutual interaction between electrical property and operating temperature until they reach the steady state. The final current and temperature distributions decide the optical and chromatic characteristics of light-emitting diodes. Besides increasing the luminous efficiency, effectively controlling electricity and thermal characteristics in the design of light-emitting diode lighting products is the key point to achieve the demand of light and color. In this paper, we designed experiments and calculation algorithm to do the temperature distribution simulation of light-emitting diode module. Then, we obtained the analysis technology to predict the reliably optical and chromatic characteristics of light-emitting diode module in practical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.