Abstract
This paper considers direct encodings of generalized algebraic data types (GADTs) in a minimal suitable lambda-calculus. To this end, we develop an extension of System F ω with recursive types and internalized type equalities with injective constant type constructors. We show how GADTs and associated pattern-matching constructs can be directly expressed in the calculus, thus showing that it may be treated as a highly idealized modern functional programming language. We prove that the internalized type equalities in conjunction with injectivity rules increase the expressive power of the calculus by establishing a non-macro-expressibility result in F ω , and prove the system type-sound via a syntactic argument. Finally, we build two relational models of our calculus: a simple, unary model that illustrates a novel, two-stage interpretation technique, necessary to account for the equational constraints; and a more sophisticated, binary model that relaxes the construction to allow, for the first time, formal reasoning about data-abstraction in a calculus equipped with GADTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.