Abstract
Olfactory receptors are G-protein-coupled chemoreceptors expressed on millions of olfactory sensory neurons within the nasal cavity. These receptors detect environmental odorants and signal the brain regarding the location of feed, potential mates, and the presence of possible threats (e.g., predators or chemical toxins). Olfactory receptors also are present in organs outside of the nasal cavity where they bind to molecules such as nutrients and metabolites from the animal's internal environment to elicit physiological responses, including changes in gut motility, ventilation rate, and cellular migration. Recent evidence supports an additional role of olfactory receptors in the regulation of appetite in humans and rodents. In particular, genetic variation among individuals in specific odorant receptor genes has been linked to differences in their feeding behaviors, food choices, and the regulation of energy balance. This review provides a general overview of the olfactory receptors of vertebrates and their genetic variability and provides supporting evidence for a physiological role of olfactory receptors in appetite regulation of livestock. Basic research on olfactory receptors of livestock and their ligands should facilitate the development of novel odorant receptor agonists and identification of specific olfactory receptor variants that may be developed to enhance animal production efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.