Abstract
Many source and data compression schemes work by splitting the input signal into blocks and producing variable-length coded data for each block. If these variable-length blocks are transmitted consecutively, then the resulting coder is highly sensitive to channel errors. Synchronization code words are often used to provide occasional resynchronization at the expense of some added redundant information. This paper introduces the error-resilient entropy code (EREC) as a method for adapting existing schemes to give increased resilience to random and burst errors while maintaining high compression. The EREC has been designed to exhibit graceful degradation with worsening channel conditions. The EREC is applicable to many problems and is particularly effective when the more important information is transmitted near the start of each variable-length block and is not dependent on following data. The EREC has been applied to both still image and video compression schemes, using the discrete cosine transform (DCT) and variable-length coding. The results have been compared to schemes using synchronization code words, and a large improvement in performance for noisy channels has been observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.