Abstract
AbstractLet k := (k1,. . .,ks) be a sequence of natural numbers. For a graph G, let F(G;k) denote the number of colourings of the edges of G with colours 1,. . .,s such that, for every c ∈ {1,. . .,s}, the edges of colour c contain no clique of order kc. Write F(n;k) to denote the maximum of F(G;k) over all graphs G on n vertices. This problem was first considered by Erdős and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases.We prove that, for every k and n, there is a complete multipartite graph G on n vertices with F(G;k) = F(n;k). Also, for every k we construct a finite optimisation problem whose maximum is equal to the limit of log2F(n;k)/${n\choose 2}$ as n tends to infinity. Our final result is a stability theorem for complete multipartite graphs G, describing the asymptotic structure of such G with F(G;k) = F(n;k) · 2o(n2) in terms of solutions to the optimisation problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.