Abstract

In this work, the interaction of different isomers of lower aliphatic alcohols with LDL representing a complex macromolecular assembly is investigated in vitro. Emphasis is given to the comparison of the impact of molecular architecture of methanol, ethanol, propanol ( n-, iso-) and butanol ( n-, iso-, sec-, tert-) in perturbing the lipid–protein assembly. The geometrical characteristics as well as the lipophilicity of the respective alcohol are considered. The EPR method combined with the spin labeling of both the apoB and the lipid monolayer allowed parallel detection of changes provoked in both phases. In addition to the change in protein environment, the spectral decomposition of the experimental data revealed a decrease in lipid ordering with the increasing concentration of the alcohols. This phenomenon for aliphatic alcohols is linearly correlated with the equal volume occupation (EVO) of alcohol in LDL. The results support the molecular mechanism of alcohol action through its interference with the lipid–protein interactions in LDL, which could be applicable to the molecular mechanism of alcohol interaction with integral membrane proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.