Abstract

BackgroundAlthough generally known as a human commensal, Staphylococcus epidermidis is also an opportunistic pathogen that can cause nosocomial infections related to foreign body materials and immunocompromized patients. Infections are often caused by multidrug-resistant (MDR) lineages that are difficult and costly to treat, and can have a major adverse impact on patients’ quality of life. Heterogeneity is a common phenomenon in both carriage and infection, but present methodology for detection of this is laborious or expensive.In this study, we present a culture-independent method, labelled Epidome, based on an amplicon sequencing-approach to deliver information beyond species level on primary samples and to elucidate clonality, population structure and temporal stability or niche selection of S. epidermidis communities.ResultsBased on an assessment of > 800 genes from the S. epidermidis core genome, we identified genes with variable regions, which in combination facilitated the differentiation of phylogenetic clusters observed in silico, and allowed classification down to lineage level. A duplex PCR, combined with an amplicon sequencing protocol, and a downstream analysis pipeline were designed to provide subspecies information from primary samples. Additionally, a probe-based qPCR was designed to provide valuable absolute abundance quantification of S. epidermidis. The approach was validated on isolates representing skin commensals and on genomic mock communities with a sensitivity of < 10 copies/μL. The method was furthermore applied to a sample set of primary skin and nasal samples, revealing a high degree of heterogeneity in the S. epidermidis populations. Additionally, the qPCR showed a high degree of variation in absolute abundance of S. epidermidis.ConclusionsThe Epidome method is designed for use on primary samples to obtain important information on S. epidermidis abundance and diversity beyond species-level to answer questions regarding the emergence and dissemination of nosocomial lineages, investigating clonality of S. epidermidis communities, population dynamics, and niche selection. Our targeted-sequencing method allows rapid differentiation and identification of clinically important nosocomial lineages in low-biomass samples such as skin samples.

Highlights

  • Generally known as a human commensal, Staphylococcus epidermidis is an opportunistic pathogen that can cause nosocomial infections related to foreign body materials and immunocompromized patients

  • The Epidome method is designed for use on primary samples to obtain important information on S. epidermidis abundance and diversity beyond species-level to answer questions regarding the emergence and dissemination of nosocomial lineages, investigating clonality of S. epidermidis communities, population dynamics, and niche selection

  • Identification of S. epidermidis as an invasive infectious pathogen is not trivial and distinguishing contamination from true infection can be challenging, and research suggests that high subspecies heterogeneity is common in healthy carriage [18, 19], and in patients suffering from prosthetic joint infections (PJIs) and atopic dermatitis [20, 21]

Read more

Summary

Introduction

Generally known as a human commensal, Staphylococcus epidermidis is an opportunistic pathogen that can cause nosocomial infections related to foreign body materials and immunocompromized patients. Identification of S. epidermidis as an invasive infectious pathogen is not trivial and distinguishing contamination from true infection can be challenging, and research suggests that high subspecies heterogeneity is common in healthy carriage [18, 19], and in patients suffering from PJIs and atopic dermatitis [20, 21]. This observation is in contrast to the nature of Staphylococcus aureus communities that are known to be highly clonal [22,23,24]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.