Abstract

Nowadays, brain natriuretic peptide (BNP-32) is fundamental to early cardiovascular clinical diagnosis, whose accurate assay is of significance by photoelectrochemistry (PEC) for the low background and high precision. Herein, a novel enhanced PEC platform was built by successive deposition of N-doped ZnO nanopolyhedra (N–ZnO NP) and protoporphyrin IX (PPIX). Specifically, the N–ZnO NP with a narrow bandgap of 2.60 eV was synthesized by direct calcination of zeolitic imidazole framework-8 (ZIF-8), and performed as the substrate to enhance the photocurrents of PPIX (as photosensitizer) whose photoelectron transfer pathway and enhanced PEC mechanism were studied in detail. Under such foundation, a label-free PEC aptasensor was developed by deposition of DNA aptamer onto the PEC platform and then ultrasensitive assay of BNP-32 based on a “signal off” model. The biosensor showed a wide linear range (1 pg mL−1- 0.1 μg mL−1) with a limit of detection (LOD) as low as 0.14 pg mL−1. This doping technique of ZnO nanomaterials provides some valuable guidelines for synthesis of advanced PEC probes in bioanalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.