Abstract
Immune checkpoint inhibitors (ICIs) have been extensively used in immunological therapy primarily due to their ability to prolong patient survival. Although ICIs have achieved success in cancer treatment, the resistance of ICIs should not be overlooked. Ferroptosis is a newly found cell death mode characterized by the accumulation of reactive oxygen species (ROS), glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inactivation, which has been demonstrated to be beneficial to immunotherapy and combining ferroptosis and ICIs to exploit new immunotherapies may reverse ICIs resistance. Exosomes act as mediators in cell-to-cell communication that may regulate ferroptosis to influence immunotherapy through the secretion of biological molecules. Thus, utilizing exosomes to target ferroptosis has opened up exciting possibilities for reversing ICIs resistance. In this review, we summarize the mechanisms of ferroptosis improving ICIs therapy and how exosomes regulate ferroptosis through adjusting iron metabolism, blocking the ROS accumulation, controlling ferroptosis defense systems, and influencing classic signaling pathways and how engineered exosomes target ferroptosis and improve ICIs efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.