Abstract

Heavy Metal (HM) bioremoval by microbes is a successful, environment-friendly technique, particularly at low concentrations of HMs. Studies using algae, bacteria, and fungi reveal promising capabilities in isolation and when used in consortia. Yet, few reviews have emphasized individual and collective HM removal rates and the associated mechanisms in natural or synthetic microbiomes. Besides discussing the limitations of conventional and synthetic biology approaches, this review underscores the utility of indigenous microbial taxon, i.e., algae, fungi, and bacteria, in HM removal with adsorption capacities and their synergistic role in microbiome-led studies. The detoxification mechanisms studied for certain HMs indicate distinctive removal pathways in each taxon which points to an enhanced effect when used as a microbiome. The role and higher efficacies of the designer microbiomes with complementing and mutualistic taxa are also considered, followed by recovery options for a circular bioeconomy. The citation network analysis further validates the multi-metal removal ability of microbiomes and the restricted capabilities of the individual counterparts. In precis, the study reemphasizes increased metal removal efficiencies of inter-taxon microbiomes and the mechanisms for synergistic and improved removal, eventually drawing attention to the benefits of ecological engineering approaches compared to other alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.