Abstract

In this paper we compute the convolution algebra in the equivariant K-theory of the Hilbert scheme of A^2. We show that it is isomorphic to the elliptic Hall algebra, and hence to the spherical DAHA of GL_\infty. We explain this coincidence via the geometric Langlands correspondence for elliptic curves, by relating it also to the convolution algebra in the equivariant K-theory of the commuting variety. We also obtain a few other related results (action of the elliptic Hall algebra on the K-theory of the moduli space of framed torsion free sheaves over P^2, virtual fundamental classes, shuffle algebras,...).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.