Abstract
We give an explicit description of the trace, or Hochschild homology, of the quantum Heisenberg category defined by Licata and Savage. We also show that as an algebra, it is isomorphic to "half" of a central extension of the elliptic Hall algebra of Burban and Schiffmann, specialized at $\sigma = \bar\sigma^{-1} = q$. A key step in the proof may be of independent interest: we show that the sum (over $n$) of the Hochschild homologies of the positive affine Hecke algebras $\mathrm{AH}_n^+$ is again an algebra, and that this algebra injects into both the elliptic Hall algebra and the trace of the $q$-Heisenberg category. Finally, we show that a natural action of the trace algebra on the space of symmetric functions agrees with the specialization of an action constructed by Schiffmann and Vasserot using Hilbert schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.