Abstract

The electrochemical behavior of the LaSrCuO4 − δ/Ce0.9Gd0.1O2 − δ interface is studied by impedance spectroscopy and cyclic voltammetry methods. By analyzing the dependence of the impedance frequency spectra on the oxygen partial pressure, the rate-determining stages of oxygen exchange are determined in the temperature interval of 500–900°C. For temperatures above 700°C, the adsorption of oxygen molecules and their dissociation to oxygen atoms are shown to make a substantial contribution to the polarization resistance of the overall electrode process, besides the charge-transfer resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.