Abstract
Abstract DFT and ab initio calculation results for proton transfer reactions in Kirby’s acetals reveal that the mechanism proceeds via efficient intramolecular general acid catalysis (IGAC) and not through a ‘classical’ general acid catalysis mechanism (GAC). Further, they show that the driving force for the proton transfer efficiency is the proximity of the two reactive centers (r) and the attack angle (α), and the rate of the reaction is linearly correlated with r2 and sin (180° − α). Acetals with short r values and with α values close to 180° (forming a linear H-bond) are more reactive due to the development of strong hydrogen bonds in their global minimum, transition state, and product structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.