Abstract

The implantation of stem cells in vivo is the ideal approach for the restoration of normal life functions, such as replenishing the decreasing levels of affected dopaminergic (DA) neurons during neurodegenerative disease conditions. However, combining stem cells with biomaterial scaffolds provides a promising strategy for engineering tissues or cellular delivery for directed stem cell differentiation as a means of replacing diseased/damaged tissues. In this study, mouse mesenchymal stem cells (MSCs) were differentiated into DA neurons using sonic hedgehog, fibroblast growth factor, basic fibroblast growth factor, and brain-derived neurotrophic factor, while they were cultured within collagen-coated 3D graphene foams (GF). The differentiation into DA neurons within the collagen-coated GF and controls (collagen gels, plastic) was confirmed using β-III tubulin, tyrosine hydroxylase (TH), and NeuN positive immunostaining. Enhanced expression of β-III tubulin, TH, and NeuN and an increase in the average neurite extension length were observed when cells were differentiated within collagen-coated GF in comparison with collagen gels. Furthermore, these graphene-based scaffolds were not cytotoxic as MSC seemed to retain viability and proliferated substantially during in vitro culture. In summary, these results suggest the utility of 3D graphene foams towards the differentiation of DA neurons from MSC, which is an important step for neural tissue engineering applications.

Highlights

  • Among all organs in our body, the human brain is one of the largest and most complex, consisting of 100 billion nerves that communicate via trillions of synaptic connections [1]

  • Several studies suggest that stem cells can be isolated and used to restore function in the adult brain, such as dopamine-producing dopaminergic (DA) neurons that are formed in the adult substantia nigra [1]

  • The helical structure of the collagen was confirmed from the IR absorption ratio between 1263, which was approximately equal to each preparation

Read more

Summary

Introduction

Among all organs in our body, the human brain is one of the largest and most complex, consisting of 100 billion nerves that communicate via trillions of synaptic connections [1]. Several studies suggest that stem cells can be isolated and used to restore function in the adult brain, such as dopamine-producing dopaminergic (DA) neurons that are formed in the adult substantia nigra [1]. Implantation of such patient-specific stem cell-derived DA neurons and their regenerative responses might provide a path to functional recovery in neurodegenerative disease and brain injury [2]. Our long-term goal is to culture 3D DA neuronal tissues on a dish that can capture in vivo neuronal functions and can be useful as tissue-on-a-

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.