Abstract
ObjectiveWith the increasing rates of obesity, many people diet in attempts to lose weight. Since weight loss is seldom maintained in a single effort, weight cycling is a common occurrence. Unfortunately, reports from clinical studies that have attempted to determine the effect of weight cycling on mortality are in disagreement, and to date, no controlled animal study has been performed to assess the impact of weight cycling on longevity. Therefore, our objective was to determine whether weight cycling altered lifespan in mice that experienced repeated weight gain and weight loss throughout their lives.MethodsMale C57BL/6J mice were placed on one of three lifelong diets: a low fat (LF) diet, a high fat (HF) diet, or a cycled diet in which the mice alternated between 4 weeks on the LF diet and 4 weeks on the HF diet. Body weight, body composition, several blood parameters and lifespan were assessed.ResultsCycling between the HF and LF diet resulted in large fluctuations in body weight and fat mass. These gains and losses corresponded to significant increases and decreases, respectively, in leptin, resistin, GIP, IGF-1, glucose, insulin, and glucose tolerance. Surprisingly, weight cycled mice had no significant difference in lifespan (801±45 days) as compared to LF fed controls (828±74 days), despite being overweight and eating a HF diet for half of their lives. In contrast, the HF fed group experienced a significant decrease in lifespan (544±73days) compared to LF fed controls and cycled mice.ConclusionsThis is the first controlled mouse study to demonstrate the effect of lifelong weight cycling on longevity. The act of repeatedly gaining and losing weight, in itself, did not decrease lifespan and was more beneficial than remaining obese.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.