Abstract

As one of the most applied EEG-based paradigms, motor imagery based brain-computer interface (MI-BCI) is used not only to control external devices, but also to help hemiplegic patients to reconstruct impaired motor function. However, in practical application of MI-BCI, users often face more varied external environments and complex cognitive activities, which could induce a high mental workload. This paper studied the effects of mental workload on motor imagery by designing a parallel task containing required motor and N-back task, taking motor execution as comparison. The experimental results showed that high mental workloads promoted the cognitive-motor process of motor imagery and restrained motor execution. Besides, the classification performance of MI-BCI was evaluated and compared at different mental workload levels between motor imagery and motor idle state. We also verified the possibility of detecting mental workload levels during motor imagery in offline analysis. The paper contributed to a wide range of MI-BCI applications and by exploring the cognitive-motor mechanism in motor imagery and execution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.