Abstract
Electrical properties of carbonised organic xerogel based on resorcinol–formaldehyde (RF), prepared by pyrolysis at 675 °C in nitrogen atmosphere for two hours, were investigated. In this temperature an insulator to semiconductor-like transition occurs. The voltage–current (V–I) characteristics indicate the presence of non-linear conductivity depending on the measurement temperature. The origin of the non-linearity in the electrical conductivity is discussed using different theoretical models. The obtained results reveal that this non-linear conductivity starts above a threshold current, which is illustrated by the presence of negative differential resistance (NDR) region. The properties of the obtained NDR are controlled by the applied current and are attributed to a percolation phenomenon in the carbonised sample. The obtained result is very promising for many applications in power electronic technology specially for the development of some negatronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.