Abstract

Devising efficient strategies for exploration in large open-ended spaces is one of the most difficult computational problems of intelligent organisms. Because the available rewards are ambiguous or unknown during the exploratory phase, subjects must act in intrinsically motivated fashion. However, a vast majority of behavioral and neural studies to date have focused on decision making in reward-based tasks, and the rules guiding intrinsically motivated exploration remain largely unknown. To examine this question we developed a paradigm for systematically testing the choices of human observers in a free play context. Adult subjects played a series of short computer games of variable difficulty, and freely choose which game they wished to sample without external guidance or physical rewards. Subjects performed the task in three distinct conditions where they sampled from a small or a large choice set (7 vs. 64 possible levels of difficulty), and where they did or did not have the possibility to sample new games at a constant level of difficulty. We show that despite the absence of external constraints, the subjects spontaneously adopted a structured exploration strategy whereby they (1) started with easier games and progressed to more difficult games, (2) sampled the entire choice set including extremely difficult games that could not be learnt, (3) repeated moderately and high difficulty games much more frequently than was predicted by chance, and (4) had higher repetition rates and chose higher speeds if they could generate new sequences at a constant level of difficulty. The results suggest that intrinsically motivated exploration is shaped by several factors including task difficulty, novelty and the size of the choice set, and these come into play to serve two internal goals—maximize the subjects' knowledge of the available tasks (exploring the limits of the task set), and maximize their competence (performance and skills) across the task set.

Highlights

  • Common experience shows that people voluntarily take on new challenges without the benefits of external rewards, suggesting that they are intrinsically motivated to learn and master new tasks

  • Important questions remain about its fundamental mechanisms, including the factors that give rise to intrinsic motivation and the roles that it plays in behavior

  • We have shown that, even in the absence of explicit instructions or primary rewards, human subjects spontaneously organize their exploration in a consistent fashion based on several factors

Read more

Summary

Introduction

Common experience shows that people voluntarily take on new challenges without the benefits of external rewards (e.g., money), suggesting that they are intrinsically motivated to learn and master new tasks. Engagement in optimally challenging tasks can at times induce a highly pleasurable state of “flow,” characterized by feelings of being relaxed, absorbed and in control (Keller and Bless, 2008; Abuhamdeh and Csikszentmihalyi, 2012), suggesting that it triggers internal rewards. This idea is consistent with evidence that the neural networks recruited during intrinsic motivation include subcortical dopamine-recipient structures that process primary (extrinsic) rewards (Kang et al, 2009; Murayama et al, 2010, 2013; Lee et al, 2012; Satterthwaite et al, 2012; Schouppe et al, 2014; Ulrich et al, 2014)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.