Abstract

In a first series of experiments, recordings were obtained from cat abducens and trochlear motorneurons and from axons of secondary vestibular neurons terminating in these motor nuclei, and the effects of cerebellar nodulus stimulation on utricular- and canal-evoked responses in these neurons were studied. Ultricular activation of vestibular axons recorded in the ipsilateral VIth and contralateral IVth nuclei was probably monosynaptically inhibited by nodular stimulation provided conditioning-test intervals were in the range between 0–10 ms and the test stimuli were close to threshold intensities. Of the vestibular axons activated by stimulation of the semicircular canal nerves only those evoked by the horizontal canal stimulation and recorded in the ipsilateral VIth nucleus were weakly inhibited. When the vestibular stimuli were strong enough to produce clear field potentials in the motor nuclei and/or postsynaptic potentials in motorneurons, nodular stimulation had practically no effect on their amplitudes. It is concluded that inhibition of vestibuloocular transmission is weak as compared to floccular inhibition studied previously. In a second series of experiments, recordings were obtained from vestibular neurons which were activated antidromically and/or transsynaptically by stimulation of the contralateral fastigial nucleus, and the effects of ipsilateral nodular stimulation on these responses were studied. It was found that nodular stimulation inhibited both antidromic as well as transsynaptic fastigial activations of vestibular neurons. Most of these vestibular neurons were located in the descending vestibular nucleus and received polysynaptic vestibular and spinal inputs. It is concluded that in addition to its weak inhibitory effect on vestibuloocular transmission the nodulus exerts a powerful inhibition on vestibular neurons transmitting vestibular and spinal inputs to cerebellar nuclei and/or cortex. It is suggested that the nodulus controls cerebellar projecting vestibular neurons which carry vestibular and spinal information to the cerebellum. The vestibular, proprioceptive and visual information which is present in the nodulus may aid the role of the nodulus in controlling body posture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.