Abstract

Spindle vibration has a significant influence on surface quality of ultra-precision-machined components. However, relatively few studies on the particular spindle vibration under the excitation of intermittent cutting forces in ultra-precision raster milling (UPRM) have been reported. In this study, a specialized model for an aerostatic bearing spindle under the impulsive excitation from intermittent cutting forces of UPRM is developed and its derived mathematical solutions reveal that the spindle vibration is impulsive response. The theoretical and experimental results signify that the impulsive spindle vibration produces inhomogeneous scallops forming ribbon-stripe patterns and irregular patterns like run-out on a surface of UPRM. The potential benefits for UPRM are the theoretical supports for optimization and prediction of surface generation through the optimal selection of spindle speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.