Abstract

ObjectiveOsteoporosis is a risk factor for implant fixation failure. The inhibition of sclerostin effectively improves bone formation and bone remodeling. Therefore, this study investigated whether SOST deficiency enhances the osseointegration of implants in a mouse model of osteoporosis induced by ovariectomy (OVX). DesignOsteoporosis was induced in female C57BL/6 and SOST deficient mice by OVX. Titanium implants were placed in the bilateral distal aspects of the femurs. Implants underwent sandblasting and acid-etching after which the structure, surface roughness and chemical components were investigated using scanning electron microscopy (SEM) and energy spectrum analyses. Undecalcified slices, μ-CT, histology analyses and mechanical tests were used to evaluate the osseointegration of implants. The results were compared using one-way ANOVA between four groups. ResultsSandblasting and acid-etching increased the roughness of the implants. OVX surgery reduced bone formation around the implants in both WT and SOST−/− mice. However, implant osseointegration was significantly improved in the SOST−/− OVX mice compared to the WT OVX mice. ConclusionsInhibition of the SOST gene improved implant fixation in the OVX osteoporotic mice, which suggests a strategy for enhancing implant osseointegration in clinical patients with osteoporosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.