Abstract

Some wastewaters contain high concentrations of ammonia coexisting with large amounts of salt, which might negatively affect the anaerobic ammonium oxidation (anammox) process. In this study, the performance of the anammox process under different saline conditions was investigated using an upflow anaerobic sludge bed-anammox system. After long-term operating for 275 days, the results indicated that the nitrogen removal efficiency remained high under the 0-40 g NaCl/L, and low salinity (15 g NaCl/L) substantially promoted specific anammox activity. Affected by the saline environment, the appearance, color, and shape of sludge notably changed, and the amount of extracellular polymeric substances gradually increased with increasing salinity, which might be one of the reasons for the strong salt tolerance of the system. Chloroflexi and Planctomycetes were the dominant strains under long-term salinity, and Brocadiaceae_g_ unclassified exhibited halophilic characteristics. The redundancy analysis results showed that the concentration of influent NH4 + -N and salinity were the main environmental factors affecting the microbial community of the system. PRACTITIONER POINTS: Provides data to support the maximum value for salinity wastewater treatment with anammox processes' tolerance of 40 g NaCl/L. EPS changes may be responsible for the response to salinity challenges and provide direction for high salinity wastewater treatment. Brocadiaceae_g_ unclassified exhibited a halophilic quality. And it can be focused on to improve treatment efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.