Abstract

The use of the concept of earthquake input energy under far-filed earthquakes and types of internal energy in structures has recently been mentioned to develop the performance-based design method. However, the extension of these studies to near-fault pulse-like earthquakes has been less considered. This paper calculates the applied ratios of energy types in the E-SDOF and MDOF systems and identifies the relationship between them. For this purpose, five steel frames (4, 10, 15, 20, and 30 story steel MRFs with 3-span) were designed, and obtained the E-SDOF structure equivalent to the first mode, using modal pushover analysis (MPA) method. All models were analyzed under 10 near-fault pulse-like earthquake records using nonlinear time history analysis. The results show that the total dissipated energy of the structure (TDE) depends on its nonlinear degree and period. The TDE of the MDOF and E-SDOF systems is equal for long periods, and its size is independent of the design resistance (R) and the degree of nonlinearity. However, in short periods, this ratio is close to the effective modal mass coefficient corresponding to the first mode. The story normalized hysteretic energy ratio is also a function of the height, nonlinear degree and period of the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.