Abstract

This study quantitatively determined the effect of electrostatic charge on the performance of an electret filtering facepiece. Monodisperse challenge corn oil aerosols with uniform charges were generated using a modified vibrating orifice monodisperse aerosol generator. The aerosol size distributions and concentrations upstream and downstream of an electret filter were measured using an aerodynamic particle sizer, an Aerosizer, and a scanning mobility particle sizer. The aerosol charge was measured by using an aerosol electrometer. The tested electret filter had a packing density of about 0.08, fiber size of 3 microns, and thickness of 0.75 mm. As expected, the primary filtration mechanisms for the micrometer-sized particles are interception and impaction, especially at high face velocities, while electrostatic attraction and diffusion are the filtration mechanisms for submicrometer-sized aerosol particles. The fiber charge density was estimated to be 1.35 x 10(-5) coulomb per square meter. After treatment with isopropanol, most of fiber charges were removed, causing the 0.3-micron aerosol penetration to increase from 36 to 68%. The air resistance of the filter increased slightly after immersion in the isopropanol, probably due to the coating of impurities in isopropanol. The aerosol penetration decreased with increasing aerosol charge. The most penetrating aerosol size became larger as the aerosol charge increased, e.g., from 0.32 to 1.3 microns when the aerosol charge increased from 0 to 500 elementary charges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.