Abstract
In this paper, the effects of the orifice nozzle number and the inlet pressure on heating and cooling performance of a counter flow Ranque–Hilsch type vortex tube (RHVT) (L/D ration is 10) are investigated by using air and oxygen as a fluid via an experimental method. Five orifices with two, three, four, five and six nozzles are made from the polyamide plastic and aluminum. The object of this research is to observe thermal behavior of air and oxygen, which are passing through an RHVT. Using two different fluids for each one of the orifices (nozzle numbers), inlet pressure is varied between 150 kPa and 700 kPa by increasing 50 kPa for each step and comparison is made between these two fluids by holding the cold mass fraction constant at 0.36. We show that the temperature gradient between the cold and hot fluid decreases whenever the orifice nozzle number increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.