Abstract

Abstract Information on the global distribution of vertical velocity of precipitating particles is needed in estimating latent heat fluxes, and therefore in the general study of energy transportation phenomena in the atmosphere. Such information is not currently available, but it can potentially be obtained by a spaceborne Doppler precipitation radar. In this paper, the expected performance for this type of Doppler radar for measuring vertical rainfall velocity is investigated. Although the high relative speed of the instrument with respect to the rainfall droplets contributes significantly to the spreading of the Doppler spectrum, accurate estimates of the average vertical velocity can be obtained when the rainfall intensity does not vary significantly within the resolution volume of the instrument. Such a result can be inferred through theoretical calculations and is confirmed by analyzing the Doppler spectra simulated using data gathered by the NASA/Jet Propulsion Laboratory (JPL) airborne rain radar i...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.