Abstract
The Devanathan‐Stachurski permeation technique was used to investigate the rate of hydrogen permeation through an iron membrane with consecutively electroplated zinc layers. Hydrogen evolution rates and hydrogen permeation rates were followed as functions of time at different applied potentials. Hydrogen evolution and permeation decreased with each successive zinc layer until finally reaching an average decrease of 93 and 96%, respectively, as compared with bare iron. Hydrogen surface coverage, exchange current density, absorption‐adsorption reaction constant, and hydrogen recombination constant were estimated on bare iron and on zinc‐plated iron. It was found that the decrease in the permeation rate of hydrogen through the iron membrane was due to (i) the decrease of hydrogen discharge rate and (ii) the suppression of hydrogen absorption and adsorption on the deposited zinc layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.