Abstract
Mo doped Li excess transition metal oxides formulated as 0.3Li[Li(0.33)Mn(0.67)]O(2)·0.7Li[Ni(0.5-x)Co(0.2)Mn(0.3-x)Mo(2x)]O(2) were synthesized using the co-precipitation process. The effects of the substitution of Ni and Mn with Mo were investigated for the density of the states, the structure, cycling stability, rate performance and thermal stability by tools such as first principle calculations, synchrotron X-ray diffraction, field-emission SEM, solid state (7)Li MAS nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), elemental mapping by scanning TEM (STEM), inductively coupled plasma atomic emission spectrometry (ICP-AES) and a differential scanning calorimeter (DSC). It was confirmed that high valence Mo(6+) doping of the Li-excess manganese-nickel-cobalt layered oxide in the transition metal enhanced the structural stability and electrochemical performance. This increase was due to strong Mo-O hybridization inducing weak Ni-O hybridization, which may reduce O(2) evolution, and metallic behavior resulting in a diminishing cell resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.