Abstract

Although chronic mitral regurgitation results in adverse left ventricular remodeling, its effect on the mitral valve leaflets per se is unknown. In a chronic ovine model, we tested whether isolated mitral regurgitation alone was sufficient to remodel the anterior mitral leaflet. Twenty-nine sheep were randomized to either control (CTRL, n=11) or experimental (HOLE, n=18) groups. In HOLE, a 2.8- to 4.8-mm diameter hole was punched in the middle scallop of the posterior mitral leaflet to create "pure" mitral regurgitation. At 12 weeks, the anterior mitral leaflet was analyzed immunohistochemically to assess markers of collagen and elastin synthesis as well as matrix metalloproteinases and proteoglycans. A semiquantitative grading scale for characteristics such as intensity and delineation of stain between layers was used to quantify differences between HOLE and CTRL specimens across the heterogeneous leaflet structure. At 12 weeks, mitral regurgitation grade was greater in HOLE versus CTRL (3.0+/-0.8 versus 0.4+/-0.4, P<0.001). In HOLE anterior mitral leaflet, saffron-staining collagen (Movat) decreased, consistent with an increase in matrix metalloproteases throughout the leaflet. Type III collagen expression was increased in the midleaflet and free edge and expression of prolyl-4-hydroxylase (indicating collagen synthesis) was increased in the spongiosa layer. The proteoglycan decorin, also involved in collagen fibrillogenesis, was increased compared with CTRL (all P</=0.05). In HOLE anterior mitral leaflet, the increased expression of proteins related to collagen synthesis and matrix degradation suggests active matrix turnover. These are the first observations showing that regurgitation alone can stimulate mitral leaflet remodeling. Such leaflet remodeling needs to be considered in reparative surgical techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.