Abstract

The effects of MEO (Altitude 20,000 km, Inclination 56°) radiation environment on the degradation of triple-junction GaAs cells (Manufactured in China) are investigated to provide the reference for solar array design. The results are presented on the performance degradation of triple-junction GaAs cells with various thicknesses of shielding silica coverglass in the MEO radiation environment, using the displacement damage dose methodology for analyzing and modeling. Degradation at different electron energies has been correlated with displacement damage dose. The maximum power of the cells without coverglass will be seriously degraded, reducing it to below 20% of the initial value by the accumulating proton dose at the end of a 1-year-mission. However, using a 100-μm-thick coveglass, the maximum power of the cells can be maintanined at 90% of the initial value. While a 100-μm-thick silica coverglass can practically block off the effects of protons on the GaAs cells in the MEO environment, its effect is not so pronounced for electrons. The use of the coverglass is of vital importance for shielding the damages by low energy protons in the MEO orbit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.