Abstract

This study investigated the effects of a purified follicle stimulating hormone (FSH) preparation supplemented with three different amounts of bovine luteinizing hormone (bLH) and a commercially available FSH with a high LH contamination on superovulatory response, plasma LH and milk progesterone levels in dairy cows. A total of 112 lactating Holstein-Friesian crossbred dairy cows were used for these experiments; the cows were randomly assigned to treatment groups consisting of purified porcine FSH (pFSH) supplemented with bLH. Group 1 was given 0.052 IU LH40 mg armour units (AU) FSH (n = 6); Group 2 was given 0.069 IU LH (n = 32); Group 3 received 0.423 IU LH (n = 34); while Group 4 cows (n = 36) were superovulated with a commercially available FSH-P®. This compound appeared to contain 8.5 IU LH40 mg AU FSH according to bioassay measurement. All animals received a total of 40 mg AU FSH at a constant dose twice daily over a 4-d period. Levels of milk progesterone and plasma LH were determined during the course of superovulatory treatment. The Group 1 treatment did not reveal multiple follicular growth, and no embryos were obtained. Superovulation of Group 3 cows resulted in significantly (P<0.05) more corpora lutea (CL; 12.6±1.1) and fertilized ova (5.1±1.3) compared with Groups 2 and 4 (10.1±0.9 and 2.6±0.6, 9.0±0.9 and 2.7±0.5, respectively). Due to a high percentage of degenerated embryos (33%) Group 3 yielded only one more transferable embryo than Groups 2 and 4. Among groups, LH levels differed in the period prior to induction of luteolysis and were similar thereafter. The progesterone pattern following FSHLH administration reflected the amount of LH supplementation. Milk progesterone levels on the day prior to embryo collection were correlated to the number of CLs and recovered embryos.It is concluded that under the conditions of our experiment superovulation with 0.423 IU LH40 mg AU FSH may yield a significantly improved superovulatory response in dairy cows. It is further suggested that LH supplementation exerts its effects mainly on follicular and oocyte maturation during the period prior to luteolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.