Abstract
Distinct preference of species for habitats is most often driven by long term differences in demographic rates between habitats. Estimating variation in those rates is key for developing successful conservation strategies. Stochastic events can interact with underlying variation in habitat quality in regulating demography but the opportunities to explore such interactions are rare. Whimbrels in Iceland show a strong preference for sparsely vegetated riverplains. Such habitats in Iceland face various threats, e.g., climate change, river regulation and spread of alien plant species. In this study we compared demographic parameters of breeding Whimbrels between riverplains and other habitats before, during and after volcanic eruption events to estimate the importance of the habitats for the species and the effect of ash deposit on breeding success. We found that an estimated minimum of 23% of the Icelandic population of Whimbrels and c. 10% of the world population of the species breed in riverplain habitats in Iceland. Whimbrels bred consistently at much higher densities in riverplain habitats than in other habitats and riverplains also had higher densities of pairs with fledglings although the proportion of successful breeders was similar between habitats. Predation by livestock may have had a considerable negative effect on breeding success on our study sites. Breeding was negatively affected by the volcanic activity, probably through the effects of ash on the invertebrate food supply, with breeding success being gradually worse closer to the eruption. Breeding success was equally affected by volcanism across habitats which differed in underlying habitat quality. This study gives an example of how populations can be regulated by factors which operate at different spatial scales, such as local variation in habitat quality and stochastic events which impact larger areas.
Highlights
Habitat specialisation is one of the major factors contributing to species vulnerability to habitat loss [1]
The variation in habitat quality is largely driven by factors such as hydrology, soil type and vegetation characteristics which relate to demography, e.g. through resource abundance, shelter, inter- and intraspecific interactions (e.g. [4])
Density of breeding pairs was significantly higher on the riverplain sites in both 2010 and 2011 and this difference was consistent across years (Fig 1, Table 2), despite densities being overall higher in 2010 than in 2011
Summary
Habitat specialisation is one of the major factors contributing to species vulnerability to habitat loss [1]. The variation in demographic parameters between preferred and other habitats will determine the effects of habitat loss on populations as habitat preference might not neccessarily translate into variation in demographic rates. Such factors can operate at different spatial as well as time scales and determine the duration of the suitability of particular patches for individual species, such as through vegetation succession and geomorphological processes. Stochastic factors, such as extreme weather events and natural hazards [5] can affect habitat quality and demography Stable long-term habitat suitability and short-term stochastic events which affect habitat quality have the potential to interact in their effects on demography at different scales
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.