Abstract

We study oscillatory and chaotic reaction fronts described by the Kuramoto-Sivashinsky equation coupled to different types of fluid motion. We first apply a Poiseuille flow on the fronts inside a two-dimensional slab. We show regions of period doubling transition to chaos for different values of the average speed of Poiseuille flow. We also analyze the effects of a convective flow due to a Rayleigh-Taylor instability. Here the front is a thin interface separating two fluids of different densities inside a two-dimensional vertical slab. Convection is caused by buoyancy forces across the front as the lighter fluid is under a heavier fluid. We first obtain oscillatory and chaotic solutions arising from instabilities intrinsic to the front. Then, we determine the changes on the solutions due to fluid motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.