Abstract

Zn-Cu-Al-CO3 layered double hydroxides (LDHs) have been successfully synthesized by using the method of constant pH co-precipitation. And it also has been proposed as a novel anodic material in Zinc-Nickel secondary batteries. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the as-prepared sample exhibit that the samples are well crystallized and have hexagon structure. The electrochemical performances of Zn-Al-LDHs and Zn-Cu-Al-LDHs with different Zn/Cu/Al molar ratios are investigated by the measurements such as galvanostatic charge-discharge, cyclic voltammogram and electrochemical impedance spectroscopy (EIS). Comparing with the pure Zn-Al-LDHs, Zn-Cu-Al-LDHs show more stable cycling performance, exhibit better reversibility and display lower charge-transfer resistance. Especially, the Zn-Cu-Al-LDHs with the Zn/Cu/Al molar ratio being 2.8:0.2:1 exhibits the best electrochemical properties than other samples. After 800 cell cycles, the specific discharge capacity of Zn-Cu-Al-LDHs with the Zn/Cu/Al molar ratio of 2.8:0.2:1is 345mAhg−1, while that of pure Zn-Al-LDHs is only 177mA hg−1. Based on these observations, the prepared Zn-Cu-Al-LDHs may be a promising anode active material for Zinc/Nickel secondary batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.