Abstract

PurposeThe main goal of this study was to assess the acute effects of 3 and 6 mg of caffeine intake per kg of body mass (b.m.) on maximal strength and strength-endurance in women habituated to caffeine. MethodsTwenty-one healthy resistance-trained female students (23.0 ± 0.9 years, body mass: 59.0 ± 6.6 kg), with a daily caffeine intake of 5.8 ± 2.6 mg/kg/b.m. participated in a randomized, crossover, double-blind design. Each participant performed three experimental sessions after ingesting either a placebo (PLAC) or 3 mg/kg/b.m. (CAF-3) and 6 mg/kg/b.m. (CAF-6) of caffeine. In each experimental session, the participants underwent a 1RM test and a strength-endurance test at 50 %1RM in the bench press exercise. Maximal load was measured in the 1RM test and the time under tension, number of preformed repetitions, power output and bar velocity were registered in the strength-endurance test.ResultsThe one-way ANOVA showed a main effect of caffeine on 1RM bench press performance (F = 14.74; p < 0.01). In comparison to the PLAC (40.48 ± 9.21 kg), CAF-3 (41.68 ± 8.98 kg; p = 0.01) and CAF-6 (42.98 ± 8.79 kg; p < 0.01) increased 1RM bench press test results. There was also a significant increase in 1RM for CAF-6 when compared to CAF-3 (p < 0.01). There was a main effect of caffeine on time under tension during the strength-endurance test (F = 13.09; p < 0.01). In comparison to the PLAC (53.52 ± 11.44 s), CAF-6 (61.76 ± 15.39 s; p < 0.01) significantly increased the time under tension during the maximal strength-endurance test. ConclusionAn acute dose of 3-to-6 mg/kg/b.m. of caffeine improves maximum strength. However, these doses of caffeine had minimal ergogenic effect on strength-endurance performance in women habituated to caffeine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.