Abstract

In the early 1930s, the group of Banting and Best showed that the choline moiety of lecithin was responsible for the prevention of the fatty livers produced in pancreatectomized dogs treated with insulin. This was the first study linking abnormal methyl metabolism with disease. Since then, deficiencies of each of the four essential dietary sources of methyl groups (choline, methionine, vitamin B-12 and folic acid) have been associated with increased risk of a number of diseases. Choline-deficient diets were shown to enhance liver tumor formation in rats, and such diets frequently were found to lead to atherosclerosis. Although methionine deficiency per se was not extensively studied in vivo, its metabolic antagonist ethionine did cause liver cancer and pancreatic toxicity in rodents. Deficiencies of vitamin B-12 and of folic acid have long been shown to cause neurological disturbances and birth defects both in humans and in experimental animals. In 1969 inborn errors of metabolism leading to the accumulation of the demethylated metabolite of methionine, homocysteine, were proposed as contributing to the early onset of atherosclerosis. Before 1990, numerous studies described the abnormal methylation of DNA in tumors and transformed cells. Less frequently investigated, however, were the exogenous and endogenous agents leading to such abnormal methylation. These included genetic variants among rodent strains and the methyl-deficient diets that caused liver cancer. In addition, several chemicals, particularly carcinogens, were shown to alter DNA methylation. The possible links between chemically induced alterations in DNA methylation and development of other diseases were little explored. However, by 1990, a chain of causality had been established in experimental carcinogenesis linking dietary methyl deficiency with methyl insufficiency in vivo, as well as with the abnormal methylation of DNA and of specific genes. Also during this period, the diminished activity of the enzyme methylenetetrahydrofolate reductase (EC 1.5.1.20), which is responsible for the actual de novo synthesis of methyl groups, was shown to be associated with increased risk of developing atherosclerosis, neurological disorders and birth defects. The exponential rise in studies on methyl metabolism and DNA methylation since then enables us to examine here the extent to which the mechanisms by which abnormal methylation processes seem to exert their toxic effects in one disease may be applicable to other pathologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.